一、油漆及其简史
油漆是一种能牢固覆盖在物体表面,起保护、装饰、标志和其他特殊用途的化学混合物涂料。
涂料一般由成膜物质、填料(颜填料)、溶剂、助剂等四部分组成。根据性能要求有时成份会略有变化,如清漆没有颜填料、粉末涂料中可以没有溶剂。
涂料属于有机化工高分子材料,所构成的涂膜属于高分子化合物类型。依照现代通行的化工产品的分类,涂料属于精细化工产品。现代的涂料正在逐步成为一类多功能性的工程材料,是化学工业中的一个重要行业。
早先涂料都是用植物油和天然树脂加工而成历以通常叫做油漆。随着工业的发展,涂料品种日益增多,质量和性能不断提高,许多新型涂料已不再含有油的成分。这样油漆这个名词就显得不够确切了。因此,现在把用于涂装物面的各种材料统称为涂料,油漆只是涂料中的一种。随着科学的发展,各种高分子合成树脂的广泛应用,使涂料产品发生了根本的变化,因此准确的名称应为“有机涂料”。其实,油漆是属于涂料的一种,只是油漆原材料采用桐油和生漆,而涂料,是根据英文翻译而来coating products 。而且,由于现代油漆几乎不再使用桐油和生漆做为原材料,因此再叫油漆,就不合适了。
三、理化性质
油漆为粘稠油性颜料,未干情况下易燃,不溶于水,微溶于脂肪,可溶于醇、醛、醚、苯、烷,易溶于汽油、煤油、柴油。
油漆不论品种或形态如何,都是由成膜物质、次要成膜物质和辅助成膜物质三种基本物质组成:
成膜物质:也称粘结剂,成膜物质大部分为有机高分子化合物如天然树脂(松香、大漆)、涂料(桐油、亚麻油、豆油、鱼油等)、合成树脂等混合配料,经过高温反应而成,也有无机物组合的油漆(如:无机富锌漆)。各种成膜物质按国家标准共xxx类。它是构成油漆的主体,决定着漆膜的性能。如果没有成膜物质,单纯颜料和辅助材料不能形成漆膜。
次要成膜物质:包括各种颜料、体质颜料、防锈颜料。颜料为漆膜提供色彩和遮盖力,提高油漆的保护性能和装饰效果,耐候性好的颜料可提高油漆的使用寿命。体质颜料可以增加漆膜的厚度,利用其本身“片状,针状”结构的性能,通过颜料的堆积叠复,形成鱼鳞状的漆膜,提高漆膜的使用寿命,提高防水性和防锈效果。防锈颜料通过其本身物理和化学防锈作用,防止物体表面被大气、化学物质腐蚀,金属表面被锈蚀。
辅助成膜物质:包括各种助剂,溶剂,各种助剂在油漆的生产过程、贮存过程、使用过程、以及漆膜的形成过程起到非常重要的作用。虽然使用的量都很少,但对漆膜的性能影响极大。甚至形不成漆膜如:不干、沉底结块、结皮。水性漆更需要助剂才能满足生产、施工、贮存和形成漆膜。油漆助剂的水平也代表了国家油漆的水平。溶剂也称“分散介质”(包括各种有机溶剂、水)主要稀释成膜物质而形成粘稠液体,以便于生产和施工。常将成膜基料和分散介质的混合物称为漆料。
四、为什么粒度在油漆检测中如此重要
控制油漆工业所用物料粒度的重要性是一个比较新的问题。在过去。欧洲中世纪的油漆工把颜料(如红铅。天青石)和动物胶(如蛋白)混合并在水中研磨成混合物,用以装饰教堂和宫殿。后来到了13世纪,又将亚麻油加到混合物种。到1900年,油漆仍基本上以白铅或氧化锌,亚麻油和松节油为基,但开始了新的有机和无机颜料的研磨。直到1945年左右,当逐渐开始使用二氧化钛,氧化铁也仍被使用。作为白色颜料,它至今任未被完全替代。
可是,不管这些近代的发展如何,仅仅从过去30年油漆工业的“魔术”般时代(当科学在油漆卑职开始起作用时)才出现的。有些人会说,现在仍处在“魔术”般的时代。
为什么粒度在油漆中如此重要?颜料的粒度对其所在油漆的基本性能具有显著影响。
不透明度:对于白色颜料,粒度影响油漆的不透明度或散射特性。光散射量随粒度减少而增加,直到进一步减少粒度,散射减少,透明性增加,对于带色的颜料,涉及到散射和吸收。
色调:可由氧化铁颜料加以说明,它是较小的粒度(0.09-0.12微米)给出带黄色,较大的粒度(0.17-0.70微米)给出越来越兰的红色,通常较小颗粒的颜料(小于0.4微米)给出亮较纯的色调的颜料,这可归因于Tyndall效应。
着色强度:对于有机颜料,粒度越小,着色强度越强。但传达到最佳值后,粒度再减小,不能增加着色强度,反而降低它
光泽度:粒度越大,白色油漆的光泽度越低、
油漆中颜料的粒度及在基料中的分散性将影响漆膜光泽。颜料细度越细,在基料中的分散均匀性越好,有助于形成平整光滑的漆膜。因此油漆的粒度检测是其生产应用的重要指标。本次油漆粒度测试实验使用的是Winner2000E激光粒度分析仪,其测试报告如下:
5891

- 1电池材料表征实践指南
- 2聚合物加工测试分析指南
- 3散量秤彩页
- 4颗粒毛重秤彩页
- 5电子舌在牙膏质量控制和研发的应用
- 6高分辨ICP-OES 助力分析钕铁硼永磁材料
- 7川源科技粉末压实密度测试仪技术及应用分析
- 8川源科技-膨胀力测试方案

- 为什么ZIF-67的最新研究进展值得关注?
- 经典介孔分子筛SBA-15又有新进展!
- 利用蜂鸟声共振技术对穿心莲内酯纳米混悬剂的开发、表征和分子动力学模拟
- 为什么核壳复合纳米材料的研究进展值得关注?
- TiZrHfNbMo 难熔高熵合金等离子体氢化及力学性能
- 《MSEA》重磅:增材制造7075铝合金,世界级难题有了新解法
- 为什么氮掺杂石墨烯的最新进展值得关注?
- 汽车一体化发光智能前脸设计难点
- Development, Characterization, and Molecular Dynamics Simulation of Andrographolide Nanosuspensions Utilizing Hummer Acoustic Resonance Technology
- 苏州碳丰科技首席科学家程金生老师以本公司名义在国际上发表关于石墨烯纤维的论文《石墨烯纤维纳米复合材料的合成及氨基酸检测的分析应用》:
- 介可视·散装物料库存管理雷达全景扫描系统在料仓、堆场中的应用
- 磷酸化修饰鬼臼果多糖的制备及生物活性
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技术 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应用
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机制
