电气石粉是把电气石原矿经过去除杂质后,再经电气石磨粉设备机械粉碎得到的粉体。经过加工提纯的电气石粉体具有较高的负离子产生量和远红外发射率,所以也称为负离子粉。桂林鸿程作为电气石磨粉设备生产厂家,我们生产的电气石超细磨粉机,可加工80-2500目电气石粉。今天为您介绍一下电气石粉用途:
电气石粉用途一:水处理材料
电气石的自发极化特性使其周围存在静电场,并具有较强吸附性,可以有效地吸附溶液中金属离子和酸根离子,并从电气石表面结晶析出,从而净化水体。因此,电气石是一种较好的水体污染治理的环境材料,作为制备吸附剂的优良原料,有着非常好的应用前景。
电气石粉用途二:保健纺织品
空气中负氧离子数量是评价空气质量的重要标准之一,因为负氧离子可以降低空气中灰尘及有害气体含量。空气中的水可以被电气石电解,从而提高空气中负氧离子数量。此外,电气石可以产生被人体吸收的红外辐射,产生热效应,使人体局部组织温度升高,血管得到扩张,加速血液流动,改善局部血液循环,起到保健***功效。因此,可以将电气石用于纺织品制造,制成具有保健功能的服装服饰。
电气石粉用途三:涂料添加剂
电气石矿物材料可以作为添加剂应用于负离子涂料。添加有超细电气石粉的涂料可以满足一般涂料对色感、质感和耐擦洗等方面的要求,还可以释放一定浓度负离子,起到一定的灭菌功效。部分日本和韩国生产的负离子涂料已在国内销售,其价格远高于普通涂料。
电气石粉用途四:光催化材料
TiO2是一种高活性光催化材料,具有良好的热稳定性和较强的抗光氧化性。但是,TiO2产生的光电子与空穴复合***,光催化效率较低,影响了TiO2的工业化应用。电气石具有自发极化和红外辐射性能,将电气石与TiO2制成复合材料,不仅可以提高TiO2的光催化活性,还兼具两种材料的优点。
电气石粉用途五:燃油活化
电气石在3~6.2μm波段具有较高的红外辐射发射率,该波段辐射有利于人体吸收,产生热效应,所以电气石矿物材料具有保健***功能。与此同时,还可以将电气石矿物材料***的红外辐射性能用于改善燃油燃烧效率。
从矿山上开采下来的电气石原矿本身是并不是很纯净的,需经过人工挑选,把晶体结构***挑选出来,统一放在水中冲洗,这一过程能去掉很多杂质,使矿石更加纯净,把挑选好的矿石晾干,用电气石超细磨粉机进行加工。电气石被粉碎的越细,所释放的能量就越强:100 目的负离子释放量为200IONS ; 325目的负离子释放量大约为400IONS; 1250 目的负离子释放量可以达到800IONS。桂林鸿程超细立磨加工的粉末有几大特点:粒度比较细、分布均匀、避免了加工出来的粉末不均匀有粗有细,成品粒度325-2500目。如果您有相关加工需求,欢迎给我们来电了解详情(伍工 13687861989)
1826

- 1电池材料表征实践指南
- 2聚合物加工测试分析指南
- 3散量秤彩页
- 4颗粒毛重秤彩页
- 5电子舌在牙膏质量控制和研发的应用
- 6高分辨ICP-OES 助力分析钕铁硼永磁材料
- 7川源科技粉末压实密度测试仪技术及应用分析
- 8川源科技-膨胀力测试方案

- 为什么ZIF-67的最新研究进展值得关注?
- 经典介孔分子筛SBA-15又有新进展!
- 利用蜂鸟声共振技术对穿心莲内酯纳米混悬剂的开发、表征和分子动力学模拟
- 为什么核壳复合纳米材料的研究进展值得关注?
- TiZrHfNbMo 难熔高熵合金等离子体氢化及力学性能
- 《MSEA》重磅:增材制造7075铝合金,世界级难题有了新解法
- 为什么氮掺杂石墨烯的最新进展值得关注?
- 汽车一体化发光智能前脸设计难点
- Development, Characterization, and Molecular Dynamics Simulation of Andrographolide Nanosuspensions Utilizing Hummer Acoustic Resonance Technology
- 苏州碳丰科技首席科学家程金生老师以本公司名义在国际上发表关于石墨烯纤维的论文《石墨烯纤维纳米复合材料的合成及氨基酸检测的分析应用》:
- 介可视·散装物料库存管理雷达全景扫描系统在料仓、堆场中的应用
- 磷酸化修饰鬼臼果多糖的制备及生物活性
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技术 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应用
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机制
